SOME COUPLED FIXED POINT RESULTS ON MODIFIED INTUITIONISTIC FUZZY METRIC SPACES AND APPLICATION TO INTEGRAL TYPE CONTRACTION

نویسندگان

  • Ashima Kanwar Department of Mathematics, Maharishi Markandeshwar University, Mullana-133207, Ambala, Haryana, India
  • Rajesh Kumar Saini Department of Mathematics, Statistics and Computer Applications, Bundelkhand University, Jhansi, U.P., India
  • Vishal Gupta Department of Mathematics, Maharishi Markandeshwar University, Mullana-133207, Ambala, Haryana, India
چکیده مقاله:

In this paper, we introduce fruitful concepts of common limit range and joint common limit range for coupled mappings on modified intuitionistic fuzzy metric spaces. An illustrations are also given to justify the notion of common limit range and joint common limit range property for coupled maps. The purpose of this paper is to prove fixed point results for coupled mappings on modified intuitionistic fuzzy metric spaces. Moreover, we extend the notion of common limit range property and E.A property for coupled maps on modified intuitionistic fuzzy metric spaces. As an application, we extend our main result to integral type contraction condition and also for finite number of mappings on modified intuitionistic fuzzy metric spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES

In this paper, we introduce the notions of fuzzy $alpha$-Geraghty contraction type mapping and fuzzy $beta$-$varphi$-contractive mapping and establish some interesting results on the existence and uniqueness of fixed points for these two types of mappings in the setting of fuzzy metric spaces and non-Archimedean fuzzy metric spaces. The main results of our work generalize and extend some known ...

متن کامل

Ordered S-Metric Spaces and Coupled Common Fixed Point Theorems of Integral Type Contraction

In the present paper, we introduces the notion of integral type contractive mapping with respect to ordered S-metric space and prove some coupled common fixed point results of integral type contractive mapping in ordered S-metric space. Moreover, we give an example to support our main result.

متن کامل

Integral type contraction and coupled fixed point theorems in ordered G-metric spaces

In this paper, we apply the idea of integral type contraction and prove some coupled fixed point theorems for such contractions in ordered $G$-metric space. Also, we support the main results by an illustrative example.

متن کامل

Caristi Type Cyclic Contraction and Coupled Fixed Point Results in Bipolar Metric Spaces

In this paper, we establish the existence of common coupled fixed point results for new Caristi type contraction of three covariant mappings in Bipolar metric spaces. Some interesting consequences of our results are achieved. Moreover, we give an illustration which presents the applicability of the achieved results.

متن کامل

COMMON FIXED POINT THEOREMS IN MODIFIED INTUITIONISTIC FUZZY METRIC SPACES

In this paper, we introduce a new class of implicit functions and also common property (E.A) in modified intuitionistic fuzzy metric spaces and utilize the same to prove some common fixed point theorems in modified intuitionistic fuzzy metric spaces besides discussing related results and illustrative examples. We are not aware of any paper dealing with such implicit functions in modified intuit...

متن کامل

Some Fixed Point Results on Intuitionistic Fuzzy Metric Spaces with a Graph

In 2006, Espinola and Kirk made a useful contribution on combining fixed point theoryand graph theory. Recently, Reich and Zaslavski studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In this paper, by using  the main idea of their work and the idea of combining fixed point theory on intuitionistic fuzzy metric spaces and graph theory, ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره 5

صفحات  123- 137

تاریخ انتشار 2017-10-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023